Hai Shu
Hai Shu
Assistant Professor of Biostatistics
-
Professional overview
-
Dr. Hai Shu is an Assistant Professor in the Department of Biostatistics at New York University. He earned a Ph.D. in Biostatistics from University of Michigan and a B.S. in Information and Computational Science from Harbin Institute of Technology in China.
His research interests include high-dimensional data analysis (esp. data integration), machine/deep learning, medical image analysis (e.g., PET, MRI, Mammography), and their applications in Alzheimer’s disease, brain tumors, breast cancer, etc. He has published relevant papers in top-tier journals and conference, such as The Annals of Statistics, Journal of the American Statistical Association, Biometrics, and AAAI Conference on Artificial Intelligence. He has also served as a reviewer on related topics for Journal of the American Statistical Association, Statistica Sinica, International Joint Conference on Artificial Intelligence, etc.
Prior to joining NYU, Dr. Hai Shu was a Postdoctoral Fellow in the Department of Biostatistics at The University of Texas MD Anderson Cancer Center.
View Dr. Hai Shu's website at https://wp.nyu.edu/haishu
-
Education
-
Postdoctoral Fellow, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USAPh.D. in Biostatistics, Department of Biostatistics, University of Michigan, Ann Arbor, USAM.S. in Biostatistics, Department of Biostatistics, University of Michigan, Ann Arbor, USAB.S. in Information and Computational Science, Department of Mathematics, Harbin Institute of Technology (哈尔滨工业大学), China
-
Areas of research and study
-
Alzheimer’s diseaseBrain tumorsBreast cancerDeep learningHigh-dimensional data analysis/integrationMachine learningMedical image analysisSpatial/temporal data analysis
-
Publications
Publications
Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement
AbstractLi, H., Liu, H., Fu, H., Shu, H., Zhao, Y., Luo, X., Hu, Y., & Liu, J. (n.d.). (L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, & S. Li, Eds.).Publication year
2022Page(s)
487-496AbstractFundus photography is a routine examination in clinics to diagnose and monitor ocular diseases. However, for cataract patients, the fundus image always suffers quality degradation caused by the clouding lens. The degradation prevents reliable diagnosis by ophthalmologists or computer-aided systems. To improve the certainty in clinical diagnosis, restoration algorithms have been proposed to enhance the quality of fundus images. Unfortunately, challenges remain in the deployment of these algorithms, such as collecting sufficient training data and preserving retinal structures. In this paper, to circumvent the strict deployment requirement, a structure-consistent restoration network (SCR-Net) for cataract fundus images is developed from synthesized data that shares an identical structure. A cataract simulation model is firstly designed to collect synthesized cataract sets (SCS) formed by cataract fundus images sharing identical structures. Then high-frequency components (HFCs) are extracted from the SCS to constrain structure consistency such that the structure preservation in SCR-Net is enforced. The experiments demonstrate the effectiveness of SCR-Net in the comparison with state-of-the-art methods and the follow-up clinical applications. The code is available at https://github.com/liamheng/Annotation-free-Fundus-Image-Enhancement.A deep learning approach to re-create raw full-field digital mammograms for breast density and texture analysis
AbstractShu, H., Chiang, T., Wei, P., Do, K. A., Lesslie, M. D., Cohen, E. O., Srinivasan, A., Moseley, T. W., Chang Sen, L. Q., Leung, J. W., Dennison, J. B., Hanash, S. M., & Weaver, O. O. (n.d.).Publication year
2021Journal title
Radiology: Artificial IntelligenceVolume
3Issue
4AbstractPurpose: To develop a computational approach to re-create rarely stored for-processing (raw) digital mammograms from routinely stored for-presentation (processed) mammograms. Materials and Methods: In this retrospective study, pairs of raw and processed mammograms collected in 884 women (mean age, 57 years ± 10 [standard deviation]; 3713 mammograms) from October 5, 2017, to August 1, 2018, were examined. Mammograms were split 3088 for training and 625 for testing. A deep learning approach based on a U-Net convolutional network and kernel regression was developed to estimate the raw images. The estimated raw images were compared with the originals by four image error and similarity metrics, breast density calculations, and 29 widely used texture features. Results: In the testing dataset, the estimated raw images had small normalized mean absolute error (0.022 ± 0.015), scaled mean absolute error (0.134 ± 0.078) and mean absolute percentage error (0.115 ± 0.059), and a high structural similarity index (0.986 ± 0.007) for the breast portion compared with the original raw images. The estimated and original raw images had a strong correlation in breast density percentage (Pearson r = 0.946) and a strong agreement in breast density grade (Cohen k = 0.875). The estimated images had satisfactory correlations with the originals in 23 texture features (Pearson r ≥ 0.503 or Spearman r ≥ 0.705) and were well complemented by processed images for the other six features. Conclusion: This deep learning approach performed well in re-creating raw mammograms with strong agreement in four image evaluation metrics, breast density, and the majority of 29 widely used texture features.A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation
AbstractLyu, C., & Shu, H. (n.d.). (A. Crimi & S. Bakas, Eds.).Publication year
2021Page(s)
435-447AbstractAutomatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953, 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.Variational-Autoencoder Regularized 3D MultiResUNet for the BraTS 2020 Brain Tumor Segmentation
AbstractTang, J., Li, T., Shu, H., & Zhu, H. (n.d.). (A. Crimi & S. Bakas, Eds.).Publication year
2021Page(s)
431-440AbstractTumor segmentation is an important research topic in medical image segmentation. With the fast development of deep learning in computer vision, automated segmentation of brain tumors using deep neural networks becomes increasingly popular. U-Net is the most widely-used network in the applications of automated image segmentation. Many well-performed models are built based on U-Net. In this paper, we devise a model that combines the variational-autoencoder regularuzed 3D U-Net model [10] and the MultiResUNet model [7]. The model is trained on the 2020 Multimodal Brain Tumor Segmentation Challenge (BraTS) dataset and predicts on the validation set. Our result shows that the modified 3D MultiResUNet performs better than the previous 3D U-Net.(TS)2WM : Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients
AbstractZhong, L., Li, T., Shu, H., Huang, C., Michael Johnson, J., Schomer, D. F., Liu, H. L., Feng, Q., Yang, W., & Zhu, H. (n.d.).Publication year
2020Journal title
NeuroImageVolume
223AbstractGlioblastoma (GBM) brain tumor is the most aggressive white matter (WM) invasive cerebral primary neoplasm. Due to its inherently heterogeneous appearance and shape, previous studies pursued either the segmentation precision of the tumors or qualitative analysis of the impact of brain tumors on WM integrity with manual delineation of tumors. This paper aims to develop a comprehensive analytical pipeline, called (TS)2WM, to integrate both the superior performance of brain tumor segmentation and the impact of GBM tumors on the WM integrity via tumor segmentation and tract statistics using the diffusion tensor imaging (DTI) technique. The (TS)2WM consists of three components: (i) A dilated densely connected convolutional network (D2C2N) for automatically segment GBM tumors. (ii) A modified structural connectome processing pipeline to characterize the connectivity pattern of WM bundles. (iii) A multivariate analysis to delineate the local and global associations between different DTI-related measurements and clinical variables on both brain tumors and language-related regions of interest. Among those, the proposed D2C2N model achieves competitive tumor segmentation accuracy compared with many state-of-the-art tumor segmentation methods. Significant differences in various DTI-related measurements at the streamline, weighted network, and binary network levels (e.g., diffusion properties along major fiber bundles) were found in tumor-related, language-related, and hand motor-related brain regions in 62 GBM patients as compared to healthy subjects from the Human Connectome Project.D-CCA : A Decomposition-Based Canonical Correlation Analysis for High-Dimensional Datasets
AbstractShu, H., Wang, X., & Zhu, H. (n.d.).Publication year
2020Journal title
Journal of the American Statistical AssociationVolume
115Issue
529Page(s)
292-306AbstractA typical approach to the joint analysis of two high-dimensional datasets is to decompose each data matrix into three parts: a low-rank common matrix that captures the shared information across datasets, a low-rank distinctive matrix that characterizes the individual information within a single dataset, and an additive noise matrix. Existing decomposition methods often focus on the orthogonality between the common and distinctive matrices, but inadequately consider the more necessary orthogonal relationship between the two distinctive matrices. The latter guarantees that no more shared information is extractable from the distinctive matrices. We propose decomposition-based canonical correlation analysis (D-CCA), a novel decomposition method that defines the common and distinctive matrices from the (Formula presented.) space of random variables rather than the conventionally used Euclidean space, with a careful construction of the orthogonal relationship between distinctive matrices. D-CCA represents a natural generalization of the traditional canonical correlation analysis. The proposed estimators of common and distinctive matrices are shown to be consistent and have reasonably better performance than some state-of-the-art methods in both simulated data and the real data analysis of breast cancer data obtained from The Cancer Genome Atlas. Supplementary materials for this article are available online.Assessment of network module identification across complex diseases
AbstractShu, H. (n.d.).Publication year
2019Journal title
Nature methodsVolume
16Issue
9Page(s)
843-852AbstractMany bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the ‘Disease Module Identification DREAM Challenge’, an open competition to comprehensively assess module identification methods across diverse protein–protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.Automatic brain tumor segmentation with domain adaptation
AbstractDai, L., Li, T., Shu, H., Zhong, L., Shen, H., & Zhu, H. (n.d.). (M. Reyes, S. Bakas, T. van Walsum, A. Crimi, F. Keyvan, & H. Kuijf, Eds.).Publication year
2019Page(s)
380-392AbstractDeep convolution neural networks, in particular, the encoder-decoder networks, have been extensively used in image segmentation. We develop a deep learning approach for tumor segmentation by combining a modified U-Net and its domain-adapted version (DAU-Net). We divide training samples into two domains according to preliminary segmentation results, and then equip the modified U-Net with domain adaptation structure to obtain a domain invariant feature representation. Our proposed segmentation approach is applied to the BraTS 2018 challenge for brain tumor segmentation, and achieves the mean dice score of 0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing tumor, respectively, on the challenge’s validation data set.Estimation of large covariance and precision matrices from temporally dependent observations
AbstractShu, H., & Nan, B. (n.d.).Publication year
2019Journal title
Annals of StatisticsVolume
47Issue
3Page(s)
1321-1350AbstractWe consider the estimation of large covariance and precision matrices from high-dimensional sub-Gaussian or heavier-tailed observations with slowly decaying temporal dependence. The temporal dependence is allowed to be long-range so with longer memory than those considered in the current literature. We show that several commonly used methods for independent observations can be applied to the temporally dependent data. In particular, the rates of convergence are obtained for the generalized thresholding estimation of covariance and correlation matrices, and for the constrained l 1 minimization and the l 1 penalized likelihood estimation of precision matrix. Properties of sparsistency and sign-consistency are also established. A gap-block cross-validation method is proposed for the tuning parameter selection, which performs well in simulations. As a motivating example, we study the brain functional connectivity using resting-state fMRI time series data with long-range temporal dependence.Sensitivity analysis of deep neural networks
AbstractShu, H., & Zhu, H. (n.d.).Publication year
2019Page(s)
4943-4950AbstractDeep neural networks (DNNs) have achieved superior performance in various prediction tasks, but can be very vulnerable to adversarial examples or perturbations. Therefore, it is crucial to measure the sensitivity of DNNs to various forms of perturbations in real applications. We introduce a novel perturbation manifold and its associated influence measure to quantify the effects of various perturbations on DNN classifiers. Such perturbations include various external and internal perturbations to input samples and network parameters. The proposed measure is motivated by information geometry and provides desirable invariance properties. We demonstrate that our influence measure is useful for four model building tasks: detecting potential 'outliers', analyzing the sensitivity of model architectures, comparing network sensitivity between training and test sets, and locating vulnerable areas. Experiments show reasonably good performance of the proposed measure for the popular DNN models ResNet50 and DenseNet121 on CIFAR10 and MNIST datasets.A label-fusion-aided convolutional neural network for isointense infant brain tissue segmentation
AbstractLi, T., Zhou, F., Zhu, Z., Shu, H., & Zhu, H. (n.d.).Publication year
2018Page(s)
692-695AbstractThe extremely low tissue contrast in white matter during an infant's isointense stage (6-8 months) of brain development presents major difficulty when segmenting brain image regions for analysis. We sought to develop a label-fusion-aided deep-learning approach for automatically segmenting isointense infant brain images into white matter, gray matter and cerebrospinal fluid using T1- and T2-weighted magnetic resonance images. A key idea of our approach is to apply the fully convolutional neural network (FCNN) to individual brain regions determined by a traditional registration-based segmentation method instead of training a single model for the whole brain. This provides more refined segmentation results by capturing more region-specific features. We show that this method outperforms traditional joint label fusion and FCNN-only methods in terms of Dice coefficients using the dataset from iSEG MICCAI Grand Challenge 2017.Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
AbstractShu, H., Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., … Oliveira, D. D. (n.d.).Publication year
2018AbstractGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
AbstractShu, H., Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., … Oliveira, D. D. (n.d.).Publication year
2018AbstractGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
AbstractShu, H., Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., … Oliveira, D. D. (n.d.).Publication year
2018AbstractGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
AbstractShu, H., Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., … Oliveira, D. D. (n.d.).Publication year
2018AbstractGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.Multiple testing for neuroimaging via hidden Markov random field
AbstractShu, H., Nan, B., & Koeppe, R. (n.d.).Publication year
2015Journal title
BiometricsVolume
71Issue
3Page(s)
741-750AbstractTraditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.