Jack Caravanos

Caravanos, Jack
Jack Caravanos

Clinical Professor of Environmental Public Health Sciences

Professional overview

For Dr. Jack Caravanos, life in the field ranges from jumping onto a motorcycle and navigating the jungles of Madre de Dios in the Peruvian Amazon studying toxic substances to traveling to remotes areas in Zambia, Indonesia, and Bolivia studying lead and other toxic wastes. By cooperating with local governments, his work provides safe, healthy, and evidence-based solutions for pollution problems in low- and middle-income countries.

In partnership with Pure Earth, an international non-profit organization, Dr. Caravanos is studying the impact of gold extraction with mercury in Peru and Indonesia. Since miners are in danger of mercury poisoning, his research team is planning interventions that teach safer techniques for gold extraction. In Kabwe, Zambia - a mining town with exposure to lead - his research will provide methods to institute safer mining practices and policy recommendations to improve environmental remediation laws.

Dr. Caravanos teaches Environmental Health for graduate students and Environmental Health in a Global World for undergraduate students. He also provides opportunities for student researchers in his ongoing projects, including in Indonesia (mercury) and Ghana (e-waste).

To learn more about Dr. Caravanos and his work, visit his website.

Education

BS, Health Science, Hunter College, New York, NY
MS, Environmental Health Engineering, New York University, New York, NY
DrPH, Environmental Health, Columbia University, New York, NY

Honors and awards

Presidential Award for Excellence in Community Service, Hunter College (2013)
Presidential Award for Excellence in Teaching, Hunter College (2006)

Areas of research and study

Artisanal Gold Mining
Dissemination and Implementation of Evidence-based Programs
Environmental Public Health Services
Global Health
Lead poisoning

Publications

Publications

Probabilistic estimates of prenatal lead exposure at 195 toxic hotspots in low- and middle-income countries

Assessment of the prevalence of lead-based paint exposure risk in Jakarta, Indonesia

Conflicting conclusions or competing methodologies? Documenting soil lead pollution in Owino Uhuru, Kenya

A meta-analysis of blood lead levels in India and the attributable burden of disease

Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine

Lead intoxicated children in Kabwe, Zambia

Pollution and global health – An agenda for prevention

Prevention-intervention strategies to reduce exposure to e-waste

Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes

Environmental contamination in Nigeria

Burden of disease resulting from lead exposure at toxic waste sites in Argentina, Mexico and Uruguay

Estimating the Prevalence of Toxic Waste Sites in Low- and Middle-Income Countries

Estimating the prevalence of toxic waste sites in low- and middle-income countries: a Ghanaian case study

The Global Burden of Lead Toxicity Attributable to Informal Used Lead-Acid Battery Sites

The prevalence of toxic hotspots in former Soviet countries

Exposición a plomo: Una tarea pendiente en México

Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013

Failed generating bibliography.

Publication year

2015

Journal title

The Lancet

Volume

386

Issue

10010

Page(s)

2287-2323
Abstract
Abstract
Background: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods: Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian metaregression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings: All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation: Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.

Protecting communities by remediating polluted sites worldwide

Spatial associations between contaminated land and socio demographics in Ghana

A simplified risk-ranking system for prioritizing toxic pollution sites in low- and middle-income countries

Blood lead levels in mexico and pediatric burden of disease implications

Case 2: Hurricane Sandy: training to improve response and recovery

Comparison of burden of disease from toxic waste sites with other recognized public health threats in India, Indonesia and the Philippines

Niveles de plomo en sangre en méxico y su implicación para la carga pediátrica de la enfermedad

The pediatric burden of disease from lead exposure at toxic waste sites in low and middle income countries

Contact

hc28@nyu.edu 715/719 Broadway 12th Floor New York, NY 10003