Elodie Ghedin

Elodie Ghedin
Elodie Ghedin

Professor of Epidemiology

Professional overview

A molecular parasitologist and virologist, Dr. Elodie Ghedin uses genomics tools to explore host-pathogen interactions in filarial worms (which cause River Blindness and Lymphatic Filariasis) and in viral infections. Her laboratory also explores influenza virus diversity in the infected host and the respiratory tract microbiome to understand transmission dynamics.

Dr. Ghedin’s omics-based predictive modeling project aims to predict severe disease outcome of influenza to develop point of care testing, as some people are more prone to severe versus mild influenza infections. Additionally, her Zika research will be used to develop predictive models for Zika disease severity.

In the Ghedin Lab, Dr. Ghedin offers students an opportunity to study genomic characteristics of human parasites and other pathogens. The research is multidisciplinary and draws upon the tools of genomics, molecular virology, and computational biology. Some projects include the study of influenza virus evolution and emergence, the analysis of the microbiome and mycobiome (fungal microbiota) associated with the pathogenesis of lung obstruction and emphysema in HIV patients, and the characterization of endosymbiotic interactions between filarial worms and Wolbachia. Additionally, Dr. Ghedin also collaborates on the GoViral Project.

As biology and diseases are all interrelated, in her Essentials of Public Health Biology class, Dr. Ghedin teaches the importance of having a foundation in human biology in order to work in any area of public health.

Education

BS, Biology, McGill University, Montreal, Canada
MS, Environmental Sciences, University of Quebec, Montreal, Canada
PhD, Molecular Parasitology, McGill University, Montreal, Canada

Honors and awards

American Academy of Microbiology Fellow (2017)
Kavli Frontiers of Science Fellow (2012)
MacArthur Fellow (2011)
Chancellor’s Distinguished Research Award (2010)

Areas of research and study

Biology
Genomics
Infectious Diseases
Viral Infections

Publications

Publications

A rapid and label-free platform for virus capture and identification from clinical samples

Yeh, Y. T., Gulino, K., Zhang, Y. H., Sabestien, A., Chou, T. W., Zhou, B., Lin, Z., Albert, I., Lu, H., Swaminathan, V., Ghedin, E., & Terrones, M.

Publication year

2020

Journal title

Proceedings of the National Academy of Sciences of the United States of America

Volume

117

Issue

2

Page(s)

895-901
Abstract
Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 102 EID50/mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.

Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection

Wang, C., Forst, C. V., Chou, T. W., Geber, A., Wang, M., Hamou, W., Smith, M., Sebra, R., Zhang, B., Zhou, B., & Ghedin, E.

Publication year

2020

Journal title

mBio

Volume

11

Issue

1
Abstract
Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection. IMPORTANCE Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro. This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level.

Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection

Bissel, S. J., Carter, C. E., Wang, G., Johnson, S. K., Lashua, L. P., Kelvin, A. A., Wiley, C. A., Ghedin, E., & Ross, T. M.

Publication year

2019

Journal title

American Journal of Pathology

Volume

189

Issue

12

Page(s)

2389-2399
Abstract
Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus–induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.

Development and characterization of a reverse-genetics system for influenza D virus

Yu, J., Liu, R., Zhou, B., Chou, T. W., Ghedin, E., Sheng, Z., Gao, R., Zhai, S. L., Wang, D., & Lia, F.

Publication year

2019

Journal title

Journal of virology

Volume

93

Issue

21
Abstract
Influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range and a broad geographical distribution. Recent IDV outbreaks in swine along with serological and genetic evidence of IDV infection in humans have raised concerns regarding the zoonotic potential of this virus. To better study IDV at the molecular level, a reverse-genetics system (RGS) is urgently needed, but to date, no RGS had been described for IDV. In this study, we rescued the recombinant influenza D/swine/Oklahoma/1314/2011 (D/OK) virus by using a bidirectional seven-plasmid-based system and further characterized rescued viruses in terms of growth kinetics, replication stability, and receptor-binding capacity. Our results collectively demonstrated that RGS-derived viruses resembled the parental viruses for these properties, thereby supporting the utility of this RGS to study IDV infection biology. In addition, we developed an IDV minigenome replication assay and identified the E697K mutation in PB1 and the L462F mutation in PB2 that directly affected the activity of the IDV ribonucleoprotein (RNP) complex, resulting in either attenuated or replication-incompetent viruses. Finally, by using the minigenome replication assay, we demonstrated that a single nucleotide polymorphism at position 5 of the 3= conserved noncoding region in IDV and influenza C virus (ICV) resulted in the inefficient cross-recognition of the heterotypic promoter by the viral RNP complex. In conclusion, we successfully developed a minigenome replication assay and a robust reverse-genetics system that can be used to further study replication, tropism, and pathogenesis of IDV. IMPORTANCE Influenza D virus (IDV) is a new type of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Increased outbreaks in pigs and serological and genetic evidence of human infection have raised concerns about potential IDV adaptation in humans. Here, we have developed a plasmid-based IDV reverse-genetics system that can generate infectious viruses with replication kinetics similar to those of wild-type viruses following transfection of cultured cells. Further characterization demonstrated that viruses rescued from the described RGS resembled the parental viruses in biological and receptor-binding properties. We also developed and validated an IDV minireplicon reporter system that specifically measures viral RNA polymerase activity. In summary, the reverse-genetics system and minireplicon reporter assay described in this study should be of value in identifying viral determinants of cross-species transmission and pathogenicity of novel influenza D viruses.

Global phylogeography and ancient evolution of the widespread human gut virus crAssphage

Edwards, R. A., Vega, A. A., Norman, H. M., Ohaeri, M., Levi, K., Dinsdale, E. A., Cinek, O., Aziz, R. K., McNair, K., Barr, J. J., Bibby, K., Brouns, S. J., Cazares, A., De Jonge, P. A., Desnues, C., Díaz Muñoz, S. L., Fineran, P. C., Kurilshikov, A., Lavigne, R., Mazankova, K., McCarthy, D. T., Nobrega, F. L., Reyes Muñoz, A., Tapia, G., Trefault, N., Tyakht, A. V., Vinuesa, P., Wagemans, J., Zhernakova, A., Aarestrup, F. M., Ahmadov, G., Alassaf, A., Anton, J., Asangba, A., Billings, E. K., Cantu, V. A., Carlton, J. M., Cazares, D., Cho, G. S., Condeff, T., Cortés, P., Cranfield, M., Cuevas, D. A., De La Iglesia, R., Decewicz, P., Doane, M. P., Dominy, N. J., Dziewit, L., Elwasila, B. M., Eren, A. M., Franz, C., Fu, J., Garcia-Aljaro, C., Ghedin, E., Gulino, K. M., Haggerty, J. M., Head, S. R., Hendriksen, R. S., Hill, C., Hyöty, H., Ilina, E. N., Irwin, M. T., Jeffries, T. C., Jofre, J., Junge, R. E., Kelley, S. T., Khan Mirzaei, M., Kowalewski, M., Kumaresan, D., Leigh, S. R., Lipson, D., Lisitsyna, E. S., Llagostera, M., Maritz, J. M., Marr, L. C., McCann, A., Molshanski-Mor, S., Monteiro, S., Moreira-Grez, B., Morris, M., Mugisha, L., Muniesa, M., Neve, H., Nguyen, N. P., Nigro, O. D., Nilsson, A. S., O’Connell, T., Odeh, R., Oliver, A., Piuri, M., Prussin, A. J., Qimron, U., Quan, Z. X., Rainetova, P., Ramírez-Rojas, A., Raya, R., Reasor, K., Rice, G. A., Rossi, A., Santos, R., Shimashita, J., Stachler, E. N., Stene, L. C., Strain, R., Stumpf, R., Torres, P. J., Twaddle, A., Ugochi Ibekwe, M. A., Villagra, N., Wandro, S., White, B., Whiteley, A., Whiteson, K. L., Wijmenga, C., Zambrano, M. M., Zschach, H., & Dutilh, B. E.

Publication year

2019

Journal title

Nature Microbiology

Volume

4

Issue

10

Page(s)

1727-1736
Abstract
Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world’s countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.

Microbial composition of the human nasopharynx varies according to influenza virus type and vaccination status

Ding, T., Song, T., Zhou, B., Geber, A., Ma, Y., Zhang, L., Volk, M., Kapadia, S. N., Jenkins, S. G., Salvatore, M., & Ghedin, E.

Publication year

2019

Journal title

mBio

Volume

10

Issue

4
Abstract
Factors that contribute to enhanced susceptibility to severe bacterial disease after influenza virus infection are not well defined but likely include the microbiome of the respiratory tract. Vaccination against influenza, while having variable effectiveness, could also play a role in microbial community stability. We collected nasopharyngeal samples from 215 individuals infected with influenza A/H3N2 or influenza B virus and profiled the microbiota by target sequencing of the 16S rRNA gene. We identified signature taxonomic groups by performing linear discriminant analysis and effective size comparisons (LEfSe) and defined bacterial community types using Dirichlet multinomial mixture (DMM) models. Influenza infection was shown to be significantly associated with microbial composition of the nasopharynx according to the virus type and the vaccination status of the patient. We identified four microbial community types across the combined cohort of influenza patients and healthy individuals with one community type most representative of the influenza virus-infected group. We also identified microbial taxa for which relative abundance was significantly higher in the unvaccinated elderly group; these taxa include species known to be associated with pneumonia. IMPORTANCE Our results suggest that there is a significant association between the composition of the microbiota in the nasopharynx and the influenza virus type causing the infection. We observe that vaccination status, especially in more senior individuals, also has an association with the microbial community profile. This indicates that vaccination against influenza, even when ineffective to prevent disease, could play a role in controlling secondary bacterial complications.

Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia

Voronin, D., Schnall, E., Grote, A., Jawahar, S., Ali, W., Unnasch, T. R., Ghedin, E., & Lustigman, S.

Publication year

2019

Journal title

PLoS Pathogens

Volume

15

Issue

9
Abstract
Human parasitic nematodes are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness), diseases that are endemic to more than 80 countries and that consistently rank in the top ten for the highest number of years lived with disability. These filarial nematodes have evolved an obligate mutualistic association with an intracellular bacterium, Wolbachia, a symbiont that is essential for the successful development, reproduction, and survival of adult filarial worms. Elimination of the bacteria causes adult worms to die, making Wolbachia a primary target for developing new interventional tools to combat filariases. To further explore Wolbachia as a promising indirect macrofilaricidal drug target, the essential cellular processes that define the symbiotic Wolbachia-host interactions need to be identified. Genomic analyses revealed that while filarial nematodes encode all the enzymes necessary for glycolysis, Wolbachia does not encode the genes for three glycolytic enzymes: hexokinase, 6-phosphofructokinase, and pyruvate kinase. These enzymes are necessary for converting glucose into pyruvate. Wolbachia, however, has the full complement of genes required for gluconeogenesis starting with pyruvate, and for energy metabolism via the tricarboxylic acid cycle. Therefore, we hypothesized that Wolbachia might depend on host glycolysis to maintain a mutualistic association with their parasitic host. We did conditional experiments in vitro that confirmed that glycolysis and its end-product, pyruvate, sustain this symbiotic relationship. Analysis of alternative sources of pyruvate within the worm indicated that the filarial lactate dehydrogenase could also regulate the local intracellular concentration of pyruvate in proximity to Wolbachia and thus help control bacterial growth via molecular interactions with the bacteria. Lastly, we have shown that the parasite's pyruvate kinase, the enzyme that performs the last step in glycolysis, could be a potential novel anti-filarial drug target. Establishing that glycolysis is an essential component of symbiosis in filarial worms could have a broader impact on research focused on other intracellular bacteria-host interactions where the role of glycolysis in supporting intracellular survival of bacteria has been reported.

Taxonomy of the order Mononegavirales: second update 2018

Failed retrieving data from NYU Scholars.

Fungi stabilize connectivity in the lung and skin microbial ecosystems

Tipton, L., Müller, C. L., Kurtz, Z. D., Huang, L., Kleerup, E., Morris, A., Bonneau, R., & Ghedin, E.

Publication year

2018

Journal title

Microbiome

Volume

6

Issue

1
Abstract
Background: No microbe exists in isolation, and few live in environments with only members of their own kingdom or domain. As microbiome studies become increasingly more interested in the interactions between microbes than in cataloging which microbes are present, the variety of microbes in the community should be considered. However, the majority of ecological interaction networks for microbiomes built to date have included only bacteria. Joint association inference across multiple domains of life, e.g., fungal communities (the mycobiome) and bacterial communities, has remained largely elusive. Results: Here, we present a novel extension of the SParse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-EASI) framework that allows statistical inference of cross-domain associations from targeted amplicon sequencing data. For human lung and skin micro- and mycobiomes, we show that cross-domain networks exhibit higher connectivity, increased network stability, and similar topological re-organization patterns compared to single-domain networks. We also validate in vitro a small number of cross-domain interactions predicted by the skin association network. Conclusions: For the human lung and skin micro- and mycobiomes, our findings suggest that fungi play a stabilizing role in ecological network organization. Our study suggests that computational efforts to infer association networks that include all forms of microbial life, paired with large-scale culture-based association validation experiments, will help formulate concrete hypotheses about the underlying biological mechanisms of species interactions and, ultimately, help understand microbial communities as a whole.

Measuring associations between the microbiota and repeated measures of continuous clinical variables using a lasso-penalized generalized linear mixed model

Tipton, L., Cuenco, K. T., Huang, L., Greenblatt, R. M., Kleerup, E., Sciurba, F., Duncan, S. R., Donahoe, M. P., Morris, A., & Ghedin, E.

Publication year

2018

Journal title

BioData Mining

Volume

11

Issue

1
Abstract
Background: Human microbiome studies in clinical settings generally focus on distinguishing the microbiota in health from that in disease at a specific point in time. However, microbiome samples may be associated with disease severity or continuous clinical health indicators that are often assessed at multiple time points. While the temporal data from clinical and microbiome samples may be informative, analysis of this type of data can be problematic for standard statistical methods. Results: To identify associations between microbiota and continuous clinical variables measured repeatedly in two studies of the respiratory tract, we adapted a statistical method, the lasso-penalized generalized linear mixed model (LassoGLMM). LassoGLMM can screen for associated clinical variables, incorporate repeated measures of individuals, and address the large number of species found in the microbiome. As is common in microbiome studies, when the number of variables is an order of magnitude larger than the number of samples LassoGLMM can be imperfect in its variable selection. We overcome this limitation by adding a pre-screening step to reduce the number of variables evaluated in the model. We assessed the use of this adapted two-stage LassoGLMM for its ability to determine which microbes are associated with continuous repeated clinical measures. We found associations (retaining a non-zero coefficient in the LassoGLMM) between 10 laboratory measurements and 43 bacterial genera in the oral microbiota, and between 2 cytokines and 3 bacterial genera in the lung. We compared our associations with those identified by the Wilcoxon test after dichotomizing our outcomes and identified a non-significant trend towards differential abundance between high and low outcomes. Our two-step LassoGLMM explained more of the variance seen in the outcome of interest than other variants of the LassoGLMM method. Conclusions: We demonstrated a method that can account for the large number of genera detected in microbiome studies and repeated measures of clinical or longitudinal studies, allowing for the detection of strong associations between microbes and clinical measures. By incorporating the design strengths of repeated measurements and a prescreening step to aid variable selection, our two-step LassoGLMM will be a useful analytic method for investigating relationships between microbes and repeatedly measured continuous outcomes.

Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure

Cadena, A. M., Ma, Y., Ding, T., Bryant, M., Maiello, P., Geber, A., Lin, P. L., Flynn, J. L., & Ghedin, E.

Publication year

2018

Journal title

Microbiome

Volume

6

Issue

1
Abstract
Background: The specific interactions of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), and the lung microbiota in infection are entirely unexplored. Studies in cancer and other infectious diseases suggest that there are important exchanges occurring between host and microbiota that influence the immunological landscape. This can result in alterations in immune regulation and inflammation both locally and systemically. To assess whether Mtb infection modifies the lung microbiome, and identify changes in microbial abundance and diversity as a function of pulmonary inflammation, we compared infected and uninfected lung lobe washes collected serially from 26 macaques by bronchoalveolar lavage over the course of infection. Results: We found that Mtb induced an initial increase in lung microbial diversity at 1 month post infection that normalized by 5 months of infection across all macaques. Several core genera showed global shifts from baseline and throughout infection. Moreover, we identified several specific taxa normally associated with the oral microbiome that increased in relative abundance in the lung following Mtb infection, including SR1, Aggregatibacter, Leptotrichia, Prevotella, and Campylobacter. On an individual macaque level, we found significant heterogeneity in both the magnitude and duration of change within the lung microbial community that was unrelated to lung inflammation and lobe involvement as seen by positron emission tomography/computed tomography (PET/CT) imaging. By comparing microbial interaction networks pre- and post-infection using the predictive algorithm SPIEC-EASI, we observe that extra connections are gained by Actinomycetales, the order containing Mtb, in spite of an overall reduction in the number of interactions of the whole community post-infection, implicating Mtb-driven ecological reorganization within the lung. Conclusions: This study is the first to probe the dynamic interplay between Mtb and host microbiota longitudinally and in the macaque lung. Our findings suggest that Mtb can alter the microbial landscape of infected lung lobes and that these interactions induce dysbiosis that can disrupt oral-airway boundaries, shift overall lung diversity, and modulate specific microbial relationships. We also provide evidence that this effect is heterogeneous across different macaques. Overall, however, the changes to the airway microbiota after Mtb infection were surprisingly modest, despite a range of Mtb-induced pulmonary inflammation in this cohort of macaques.

Taxonomy of the order Mononegavirales: update 2018

Amarasinghe, G. K., Aréchiga Ceballos, N. G., Banyard, A. C., Basler, C. F., Bavari, S., Bennett, A. J., Blasdell, K. R., Briese, T., Bukreyev, A., Caì, Y., Calisher, C. H., Campos Lawson, C., Chandran, K., Chapman, C. A., Chiu, C. Y., Choi, K. S., Collins, P. L., Dietzgen, R. G., Dolja, V. V., Dolnik, O., Domier, L. L., Dürrwald, R., Dye, J. M., Easton, A. J., Ebihara, H., Echevarría, J. E., Fooks, A. R., Formenty, P. B., Fouchier, R. A., Freuling, C. M., Ghedin, E., Goldberg, T. L., Hewson, R., Horie, M., Hyndman, T. H., Jiāng, D., Kityo, R., Kobinger, G. P., Kondō, H., Koonin, E. V., Krupovic, M., Kurath, G., Lamb, R. A., Lee, B., Leroy, E. M., Maes, P., Maisner, A., Marston, D. A., Mor, S. K., Müller, T., Mühlberger, E., Ramírez, V. M. N., Netesov, S. V., Ng, T. F. F., Nowotny, N., Palacios, G., Patterson, J. L., Pawęska, J. T., Payne, S. L., Prieto, K., Rima, B. K., Rota, P., Rubbenstroth, D., Schwemmle, M., Siddell, S., Smither, S. J., Song, Q., Song, T., Stenglein, M. D., Stone, D. M., Takada, A., Tesh, R. B., Thomazelli, L. M., Tomonaga, K., Tordo, N., Towner, J. S., Vasilakis, N., Vázquez-Morón, S., Verdugo, C., Volchkov, V. E., Wahl, V., Walker, P. J., Wang, D., Wang, L. F., Wellehan, J. F., Wiley, M. R., Whitfield, A. E., Wolf, Y. I., Yè, G., Zhāng, Y. Z., & Kuhn, J. H.

Publication year

2018

Journal title

Archives of Virology

Volume

163

Issue

8

Page(s)

2283-2294
Abstract
In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.

Tropheryma whipplei colonization in HIVinfected individuals is not associated with lung function or inflammation

Qin, S., Clausen, E., Nouraie, S. M., Kingsley, L., McMahon, D., Kleerup, E., Huang, L., Ghedin, E., Greenblatt, R. M., & Morris, A.

Publication year

2018

Journal title

PloS one

Volume

13

Issue

10
Abstract
Studies demonstrate that Tropheryma whipplei (T. whipplei) is present in the lungs of healthy individuals without acute respiratory symptoms or acute respiratory infection and is more common in the lungs of HIV-infected individuals and in smokers. The impact of T. whipplei colonization in the lung on local inflammation and pulmonary dysfunction in HIVinfected individuals is currently unknown. In this study, we performed specific polymerase chain reaction (PCR) and sequencing for T. whipplei in bronchoalveolar lavage (BAL) and induced sputum (IS) samples in 76 HIV-infected participants from three clinical sites. Pulmonary function and proinflammatory cytokine and chemokine levels in BAL were measured. Frequency of T. whipplei in either BAL or IS was 43.4%. The sensitivity and specificity of IS compared to BAL for detection of T. whipplei was 92.3% and 84.2%, respectively, and isolates of T. whipplei in the BAL and IS in the same subject shared genetic identity. Pulmonary function measures were not associated with T. whipplei colonization, and proinflammatory cytokine and chemokine levels in BAL and plasma as well as percentages of inflammatory cells in BAL and IS were not higher in colonized individuals. Overall, these results indicate that T. whipplei colonization in the lung is common, but may not be associated with decreased pulmonary function or inflammation in HIV-infected individuals.

Characterization of five unclassified orthobunyaviruses (Bunyaviridae) from Africa and the Americas

Rogers, M. B., Gulino, K. M., Tesh, R. B., Cui, L., Fitch, A., Unnasch, T. R., Popov, V. L., Travassos Da Rosa, A. P., Guzman, H., Carrera, J. P., Vasilakis, N., & Ghedin, E.

Publication year

2017

Journal title

Journal of General Virology

Volume

98

Issue

9

Page(s)

2258-2266
Abstract
The Bunyaviridae family is made up of a diverse range of viruses, some of which cause disease and are a cause for concern in human and veterinary health. Here, we report the genomic and antigenic characterization of five previously uncharacterized bunyaviruses. Based on their ultrastructure, antigenic relationships and phylogenomic relationships, the five viruses are classified as members of the Orthobunyavirus genus. Three are viruses in the California encephalitis virus serogroup and are related to Trivittatus virus; the two others are most similar to the Mermet virus in the Simbu serogroup, and to the Tataguine virus, which is not currently assigned to a serogroup. Each of these five viruses was pathogenic to newborn mice, indicating their potential to cause illness in humans and other animals.

Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq

Grote, A., Voronin, D., Ding, T., Twaddle, A., Unnasch, T. R., Lustigman, S., & Ghedin, E.

Publication year

2017

Journal title

PLoS neglected tropical diseases

Volume

11

Issue

3
Abstract
Background: Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings: To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance: This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies.

Evolution and cryo-electron microscopy capsid structure of a north american bat adenovirus and its relationship to other mastadenoviruses

Hackenbrack, N., Rogers, M. B., Ashley, R. E., Keel, M. K., Kubiski, S. V., Bryan, J. A., Ghedin, E., Holmes, E. C., Hafenstein, S. L., & Allison, A. B.

Publication year

2017

Journal title

Journal of virology

Volume

91

Issue

2
Abstract
Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV.

Genomic and phenotypic characterization of myxoma virus from Great Britain reveals multiple evolutionary pathways distinct from those in Australia

Kerr, P. J., Cattadori, I. M., Rogers, M. B., Fitch, A., Geber, A., Liu, J., Sim, D. G., Boag, B., Eden, J. S., Ghedin, E., Read, A. F., & Holmes, E. C.

Publication year

2017

Journal title

PLoS Pathogens

Volume

13

Issue

3
Abstract
The co-evolution of myxoma virus (MYXV) and the European rabbit occurred independently in Australia and Europe from different progenitor viruses. Although this is the canonical study of the evolution of virulence, whether the genomic and phenotypic outcomes of MYXV evolution in Europe mirror those observed in Australia is unknown. We addressed this question using viruses isolated in the United Kingdom early in the MYXV epizootic (1954–1955) and between 2008–2013. The later UK viruses fell into three distinct lineages indicative of a long period of separation and independent evolution. Although rates of evolutionary change were almost identical to those previously described for MYXV in Australia and strongly clock-like, genome evolution in the UK and Australia showed little convergence. The phenotypes of eight UK viruses from three lineages were characterized in laboratory rabbits and compared to the progenitor (release) Lausanne strain. Inferred virulence ranged from highly virulent (grade 1) to highly attenuated (grade 5). Two broad disease types were seen: cutaneous nodular myxomatosis characterized by multiple raised secondary cutaneous lesions, or an amyxomatous phenotype with few or no secondary lesions. A novel clinical outcome was acute death with pulmonary oedema and haemorrhage, often associated with bacteria in many tissues but an absence of inflammatory cells. Notably, reading frame disruptions in genes defined as essential for virulence in the progenitor Lausanne strain were compatible with the acquisition of high virulence. Combined, these data support a model of ongoing host-pathogen co-evolution in which multiple genetic pathways can produce successful outcomes in the field that involve both different virulence grades and disease phenotypes, with alterations in tissue tropism and disease mechanisms.

ICTV virus taxonomy profile: Nyamiviridae

Failed generating bibliography.

Publication year

2017

Journal title

Journal of General Virology

Volume

98

Issue

12

Page(s)

2914-2915
Abstract
The Nyamiviridae is a family of viruses with unsegmented, negative-sense RNA genomes of 11.3-12.2 kb that produce enveloped, spherical virions. Viruses of the genus Nyavirus are tick-borne and some also infect birds. Other nyamiviruses infecting parasitoid wasps and plant parasitic nematodes have been classified into the genera Peropuvirus and Socyvirus, respectively. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Nyamiviridae, which is available at www.ictv.global/report/nyamiviridae.

Integrative gene network analysis identifies key signatures, intrinsic networks and host factors for influenza virus A infections

Forst, C. V., Zhou, B., Wang, M., Chou, T. W., Mason, G., Song, W. M., Schadt, E., Ghedin, E., & Zhang, B.

Publication year

2017

Journal title

npj Systems Biology and Applications

Volume

3

Issue

1
Abstract
Influenza A virus, with the limited coding capacity of 10–14 proteins, requires the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only reveals molecular pathways exploited by the virus or triggered by the immune system, but also provides further targets for antiviral drug development. To uncover novel pathways and key targets of influenza infection, we assembled a large amount of data from 12 cell-based gene-expression studies of influenza infection for an integrative network analysis. We systematically identified differentially expressed genes and gene co-expression networks induced by influenza infection. We revealed the dedicator of cytokinesis 5 (DOCK5) played potentially an important role for influenza virus replication. CRISPR/Cas9 knockout of DOCK5 reduced influenza virus replication, indicating that DOCK5 is a key regulator for the viral life cycle. DOCK5’s targets determined by the DOCK5 knockout experiments strongly validated the predicted gene signatures and networks. This study systematically uncovered and validated fundamental patterns of molecular responses, intrinsic structures of gene co-regulation, and novel key targets in influenza virus infection.

Lessons from the genomes and transcriptomes of filarial nematodes

Grote, A., Lustigman, S., & Ghedin, E.

Publication year

2017

Journal title

Molecular and Biochemical Parasitology

Volume

215

Page(s)

23-29
Abstract
Human filarial infections are a leading cause of morbidity in the developing world. While a small arsenal of drugs exists to treat these infections, there remains a tremendous need for the development of additional interventions. Recent genome sequences and transcriptome analyses of filarial nematodes have provided novel biological insight and allowed for the prediction of novel drug targets as well as potential vaccine candidates. In this review, we discuss the currently available data, insights gained into the metabolism of these organisms, and how the filaria field can move forward by leveraging these data.

Multiplex reverse transcription-PCR for simultaneous surveillance of influenza A and B viruses

Zhou, B., Deng, Y. M., Barnes, J. R., Sessions, O. M., Chou, T. W., Wilson, M., Stark, T. J., Volk, M., Spirason, N., Halpin, R. A., Kamaraj, U. S., Ding, T., Stockwell, T. B., Salvatore, M., Ghedin, E., Barr, I. G., & Wentworth, D. E.

Publication year

2017

Journal title

Journal of Clinical Microbiology

Volume

55

Issue

12

Page(s)

3492-3501
Abstract
Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RTPCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms.

Possibility and challenges of conversion of current virus species names to Linnaean binomials

Postler, T. S., Clawson, A. N., Amarasinghe, G. K., Basler, C. F., Bavari, S., Benko, M., Blasdell, K. R., Briese, T., Buchmeier, M. J., Bukreyev, A., Calisher, C. H., Chandran, K., Charrel, R., Clegg, C. S., Collins, P. L., De La Torre, J. C., DeRisi, J. L., Dietzgen, R. G., Dolnik, O., Dürrwald, R., Dye, J. M., Easton, A. J., Emonet, S., Formenty, P., Fouchier, R. A., Ghedin, E., Gonzalez, J. P., Harrach, B., Hewson, R., Horie, M., Jiāng, D., Kobinger, G., Kondo, H., Kropinski, A. M., Krupovic, M., Kurath, G., Lamb, R. A., Leroy, E. M., Lukashevich, I. S., Maisner, A., Mushegian, A. R., Netesov, S. V., Nowotny, N., Patterson, J. L., Payne, S. L., Paweska, J. T., Peters, C. J., Radoshitzky, S. R., Rima, B. K., Romanowski, V., Rubbenstroth, D., Sabanadzovic, S., Sanfaçon, H., Salvato, M. S., Schwemmle, M., Smither, S. J., Stenglein, M. D., Stone, D. M., Takada, A., Tesh, R. B., Tomonaga, K., Tordo, N., Towner, J. S., Vasilakis, N., Volchkov, V. E., Wahl-Jensen, V., Walker, P. J., Wang, L. F., Varsani, A., Whitfield, A. E., Murilo Zerbini, F., & Kuhn, J. H.

Publication year

2017

Journal title

Systematic Biology

Volume

66

Issue

3

Page(s)

463-473
Abstract
Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted toconvert all currently official names ofspecies included in the virusfamily Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment.

Taxonomy of the order Mononegavirales: update 2017

Amarasinghe, G. K., Bào, Y., Basler, C. F., Bavari, S., Beer, M., Bejerman, N., Blasdell, K. R., Bochnowski, A., Briese, T., Bukreyev, A., Calisher, C. H., Chandran, K., Collins, P. L., Dietzgen, R. G., Dolnik, O., Dürrwald, R., Dye, J. M., Easton, A. J., Ebihara, H., Fang, Q., Formenty, P., Fouchier, R. A., Ghedin, E., Harding, R. M., Hewson, R., Higgins, C. M., Hong, J., Horie, M., James, A. P., Jiāng, D., Kobinger, G. P., Kondo, H., Kurath, G., Lamb, R. A., Lee, B., Leroy, E. M., Li, M., Maisner, A., Mühlberger, E., Netesov, S. V., Nowotny, N., Patterson, J. L., Payne, S. L., Paweska, J. T., Pearson, M. N., Randall, R. E., Revill, P. A., Rima, B. K., Rota, P., Rubbenstroth, D., Schwemmle, M., Smither, S. J., Song, Q., Stone, D. M., Takada, A., Terregino, C., Tesh, R. B., Tomonaga, K., Tordo, N., Towner, J. S., Vasilakis, N., Volchkov, V. E., Wahl-Jensen, V., Walker, P. J., Wang, B., Wang, D., Wang, F., Wang, L. F., Werren, J. H., Whitfield, A. E., Yan, Z., Ye, G., & Kuhn, J. H.

Publication year

2017

Journal title

Archives of Virology

Volume

162

Issue

8

Page(s)

2493-2504
Abstract
In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

Transmission bottleneck size estimation from pathogen deep-sequencing data, with an application to human influenza A virus

Leonard, A. S., Weissman, D. B., Greenbaum, B., Ghedin, E., & Koelle, K.

Publication year

2017

Journal title

Journal of virology

Volume

91

Issue

14
Abstract
The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deepsequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.

Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection

Cribbs, S. K., Uppal, K., Li, S., Jones, D. P., Huang, L., Tipton, L., Fitch, A., Greenblatt, R. M., Kingsley, L., Guidot, D. M., Ghedin, E., & Morris, A.

Publication year

2016

Journal title

Microbiome

Volume

4

Issue

1

Contact

elodie.ghedin@nyu.edu +1 (212) 998-8250 715/719 Broadway New York, NY 10003